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Abstract
We present a theory of particles, obeying intermediate statistics (‘anyons’),
interpolating between bosons and fermions, based on the principle of detailed
balance. It is demonstrated that the scattering probabilities of identical particles
can be expressed in terms of the basic numbers, which arise naturally and
logically in this theory. A transcendental equation determining the distribution
function of anyons is obtained in terms of the statistics parameter, whose
limiting values 0 and 1 correspond to bosons and fermions respectively. The
distribution function is determined as a power series involving the Boltzmann
factor and the statistics parameter and we also express the distribution function
as an infinite continued fraction. The last form enables one to develop
approximate forms for the distribution function, with the first approximant
agreeing with our earlier investigation.

PACS numbers: 05.30.−d, 05.90.+m, 05.30.Pr

1. Introduction

We formulate a theory of particles obeying intermediate statistics, interpolating between
bosons and fermions, which might be called anyons. Our formulation will be based on two
assumptions: (1) the exchange symmetry or permutation of the coordinates of the particles
in the many-particle wavefunction is accompanied by multiplication by a complex number
f , thus generalizing the symmetric or antisymmetric wavefunctions and (2) the principle of
detailed balance: if n1, n2 represent the average occupation numbers of states labelled by 1
and 2, then the number of transitions flowing from 1 to 2 must be equal to that flowing from 2
to 1 at equilibrium.

The particles described by this theory may or may not be the same as the anyons obeying
intermediate or fractional statistics discussed in the literature. The objects named anyons
[1–8] carry both an electric charge and a magnetic flux. They have attracted a great deal of
attention and have been the subject of intense investigation in the literature. The anyons arise
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from the special circumstance in (2+1) spacetime dimensions, where the permutation group
is the Braid group and the Chern–Simons theory provides a natural realization of the anyons
[9, 10]. There has been a great deal of discussion in the literature on the thermostatistics of
anyons [11]. Since the real world is strictly in a (3+1)-dimensional space, anyons may not
be real particles: they could be quasi-particles playing important roles in condensed matter
phenomena. More recently, the subject of generalized statistics has been investigated in one
dimension in the context of many kinds of statistics [12]. In contrast to the theory of anyons
familiar in the literature, our present approach is not limited to two space dimensions and is
valid in the real world of (3+1)-dimensional spacetime. It is important to point out that this is
due to the fact that we do not invoke the spin-statistics theorem and do not require ordinary
spin to be interpreted in two-dimensional space.

On one hand, the theory based only on detailed balance does not have the features of the
full-fledged theory of anyons which takes advantage of the braid group in two dimensions. On
the other hand, in this formulation we investigate the idea of interpolating statistics only in the
context of the statistical mechanics of a gas in equilibrium, without the constraints imposed
by quantum field theory. Here we shall use the name anyons, for convenience, to refer to
particles obeying intermediate statistics, with the understanding that the present work needs
to be developed further by incorporating additional assumptions before the connection with
true anyons described in the literature could be established.

The subject of anyons has been well investigated in the literature, especially in the context
of quantum field theory and the braid group [2, 5, 7, 8]. Interesting results have also been
derived to describe the thermostatistics of anyons, such as determining the virial coefficients
[11, 13]. However, the theoretical basis of the statistical mechanics of anyons has not really
been established. For instance, the distribution function for the anyons has not been determined
in an exact form. We had used an ansatz for the distribution function in our earlier work in
order to derive many of the thermodynamic properties [11]. More recently, Chaturvedi and
Srinivasan [14] have done a comparative study of the different interpolations between Bose–
Einstein (BE) and Fermi–Dirac (FD) statistics available in the literature, in the context of
the most general interpolations, including Haldane statistics and Gentile statistics, with the
conclusion that the distribution function introduced by us [11] has some desirable features.

Consequently, it is worthwhile investigating the basic theoretical structure of anyons
from the point of view of statistical mechanics and investigating the distribution function
of the anyons if possible. This is the goal of this paper. Not only shall we determine the
distribution function of the particles obeying the interpolation statistics, but also we shall
formulate a theory which leads to this determination without resorting to the restriction to a
two-dimensional space. Our formulation will be based on the quantum theory of many particles
permitting a generalized interpolating exchange symmetry statistics with no other assumptions.
Remarkably, this formulation leads to an exact theory which requires the employment of basic
numbers.

In section 2 we study the scattering probability of many particle states obeying
interpolating statistics. We establish the fact that the basic numbers arise naturally and
logically in this theory. We introduce the method of detailed balance in section 3 and derive a
transcendental equation for the distribution function in terms of the Boltzmann factor and the
statistics determining parameter. The distribution function of anyons is studied in section 4
where we show that a closed form solution is not possible. We present the exact solution for the
distribution function as an infinite series as well as in the form of an infinite continued fraction
which is amenable to approximations. Section 5 contains a brief summary and conclusions.

Let us introduce an ensemble of particles, the anyons, which obey a generalized statistics,
interpolating between (BE) and (FD) statistics. We begin with the framework for building
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the wavefunctions of these anyons by a generalized procedure of f -symmetrizing in such a
way that it will reduce, in appropriate limits, to the standard procedure of symmetrizing for
bosons and anti-symmetrizing for fermions. The operation of permutation or exchange of
the coordinates of the many-particle wavefunction results in multiplication by the complex
number f , the exchange symmetry parameter, so that

P�n(. . . , qi, . . . , qj , . . .) = f �n(. . . , qj , . . . , qi, . . .). (1)

Since the Hamiltonian has the property P−1HP = H, it follows that H(P�n) = En(P�n)

and thus P�n is an eigenfunction of the Hamiltonian with the same eigenvalue as �n. Thus
f �n is proportional to �n and consequently we may take |f |2�n = �n. Hence the general
exchange symmetry that would lead to an intermediate statistics could be implemented by the
complex number f with the property |f |2 = 1. We shall accordingly choose the exchange
symmetry to be implemented by f = eiπα , where α is the statistics determining parameter,
0 � α � 1, so that f ∗ = f −1. The limits f → 1,−1 correspond respectively to the BE and
FD statistics representing bosons and fermions. This procedure for incorporating exchange
symmetry among anyons is justified [7] by the special property of rotations in two dimensions.
Here we may treat it as an assumption or an ansatz, not restricted to two space dimensions but
valid in any number of dimensions.

2. Many particles and quantum probabilities

Following Feynman [15], we consider the two-particle scattering amplitude defined by the
product a1b2, where a1 = 〈1|a〉 describes the scattering of particle a into state 1 and b2 = 〈2|b〉
describes the process b → 2. We shall take 1 and 2 to be the same state at the end in order to
deal with identical particles. The exchange symmetry has to do with the process corresponding
to a → 2, b → 1 which is indistinguishable from the direct process and the amplitude for this
process would be f a2b1 due to the exchange factor f . The total probability amplitude is the
sum of the direct and exchange processes. Employing the abbreviation 〈1|a〉 = 〈2|a〉 = a,
we find the probability of this two-particle scattering process involving non-identical particles
to be

p(2)
non = (1 + |f |2)|a|2|b|2 = 2(|a|2|b|2) (2)

since |f |2 = 1. This probability is the same as for ordinary bosons [15]. However, for
identical particles, we need to take account of interference between the two processes and that
makes a great deal of difference. We obtain the probability in this case to be

p
(2)
identical = (1 + |f |2 + f + f −1)|a|2|b|2 (3)

since f ∗ = f −1 and this probability depends on the statistics determining parameter α. In
the limit f → 1, this would reduce to the case of bosons and it would be twice as much as
in equation (2) for the non-identical particles. For arbitrary f the probability for the process
involving identical particles relative to that for non-identical particles is given by

P
(2)
identical = 1

2 (2 + f + f −1)|a|2|b|2. (4)

In what follows, we shall omit |a|2, |b|2, etc, since the single particle states are properly
normalized. Understanding this to be a proportionality, we might henceforth refer to this itself
as the probability for the process, or just the probability of the two-particle state, for simplicity.

Similarly, we consider the three-particle processes a → 1, b → 2, c → 3 together
with the exchange processes with factor f for each exchange operation, thus resulting in the
combination abc + f acb + f bac + f 2bca + f 2cab + f 3cba with the same abbreviation as
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earlier. We can now determine the probability for the three-particle process, or just for the
three-particle state with identical particles, as

P (3) = 1
6 (1 + 2f −1 + 2f −2 + f −3)(1 + 2f + 2f 2 + f 3). (5)

We can reduce this to the form

P (3) = 1
6 {10 + 8(f + f −1) + 4(f 2 + f −2) + (f 3 + f −3)}

= 1
6 {6 + 7(f + f −1) + 4(f 2 + f −2 + 1) + (f 3 + f −3 + f + f −1)}. (6)

Recognizing the pattern here, we observe that the right-hand sides in the expressions for the
probabilities in equations (4)–(6) contain basic numbers [16] , with the base f . They are
indeed expressed succinctly in terms of the basic numbers defined by

[n]f = f n − f −n

f − f −1
. (7)

We shall henceforth omit the subscript f for simplicity. Here f = eiπα , the BE limit is
α → 0, f → 1 and the FD limit is α → 1, f → −1 and f ∗ = f −1. Our formulation is
symmetric under f → f −1 and is the familiar generalization of the basic numbers introduced
long ago by Jackson [16]. Studying the limits we find that the bose limit gives [n] → n while
the Fermi limit is quite different: [n] → (−1)n+1n which becomes −n for even numbers
and +n for odd numbers. In this limit, we are therefore dealing with a generalization of
ordinary fermions for which the exclusion principle is not automatically valid: in the FD limit
it can be imposed by hand only. Returning to the basic numbers introduced in equation (7),
it is quite evident in equations (4)–(6), and as will be seen in more detail below, that the
basic numbers arise naturally, automatically, in the theory of particles obeying interpolating
statistics. This feature is quite new and not recognized in the standard theory of anyons in
the literature. This might be an indication that the theory of interpolating statistics naturally
involves a deformation of the system such as that described by the basic number system with
its consequences, without however introducing a deformed algebra of operators.

In addition to the representation,

[n] = f n−1 + f n−3 + · · · + f −n+3 + f −n+1 (8)

the following representation of the bracket number

[n] = sin nπα

sin πα
(9)

will be found most useful. In terms of the basic numbers, the probabilities may now be
expressed conveniently and succinctly as

P (2) = 1
2 (2 + [2])

P (3) = 1
6 (6 + 7[2] + 4[3] + [4]) (10)

P (4) = 1
4! (35 + 54[2] + 52[3] + 36[4] + 18[5] + 6[6] + [7])

and so on. We can derive a useful result,

[1] + [3] + [5] + · · · + [2n − 1] = ([n])2 (11)

which can be proved by using [17] the identity,

1

sin t

n∑
k=1

sin(2k − 1)t =
(

sin nt

sin t

)2

. (12)

We shall also find the following result quite useful:

[n − 1][n] = [2] + [4] + [6] + · · · + [2(n − 1)]. (13)
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In other words, [2] [3] = [2] + [4], [3] [4] = [2] + [4] + [6], etc. This is proved by using the
identity

n−1∑
k=0

sin ky = sin
(n − 1)y

2
sin

ny

2
csc

y

2
. (14)

These identities can be used to re-express equations (10) in the form

P (2) = 1

2
(2 + [2])

P (3) = 1

3!
(2 + [2])(2 + 2[2] + [3]) (15)

P (4) = 1

4!
(2 + [2])(2 + 2[2] + [3])(2 + 2[2] + 2[3] + [4]).

In this manner, generalizing to n particles, we are led to the probability for the n-anyon state:

P (n) = 1

n!
(2 + [2])(2 + 2[2] + [3]) · · · (2 + 2[2] + 2[3] + · · · + 2[n − 1] + [n]). (16)

3. Detailed balance

From equation (16), we can infer the enhancement factor, which is a measure of how much
greater the probability of the (n + 1)-particle state is, compared to the probability of the
n-particle state. For now, we simply express it as

F(n) = P (n+1)

P (n)
(17)

which can be determined from equation (16). This enhancement factor provides the essential
step in the method of detailed balance. This brings us to the second assumption upon which
our theory of interpolating statistics rests: if n1, n2 represent the average occupation numbers
of states 1 and 2 respectively, then the number of transitions flowing from 1 to 2 must be equal
to that flowing from 2 to 1 at equilibrium. This is the principle of detailed balance. We should
stress that this principle is characteristic of thermodynamic equilibrium and may be regarded
as a consequence of the second law of thermodynamics [18]. Indeed, the principle of detailed
balance is valid when the thermodynamic equilibrium prevails or the validity of microscopic
reversibility in the language of statistical physics. This notion is based on the reversibility of
the microscopic equations of motion, or on the Hermitian nature of the scattering Hamiltonian
[19]. The principle of detailed balance can thus be stated as

n1F(n2) eβE1 = n2F(n1) eβE2 (18)

where the population of each level is governed by the Boltzmann factor and F(n) is the
enhancement factor. This yields

n

F(n)
eβE = constant = z (19)

which would, in principle, enable us to determine the distribution function for the anyons in
terms of the Boltzmann factor. In the BE limit for instance, the enhancement factor is just
n + 1, which immediately leads to the BE distribution

n = 1

z−1 eβE − 1
(20)
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where z = eβµ is the fugacity of the gas. Let us now proceed in the same manner for arbitrary
f . The enhancement factor for arbitrary f is given by equations (16) and (17), which reduces
to the simple form

F(n) = P (n+1)

P (n)
= 1

n + 1
(2 + 2[2] + 2[3] + · · · + 2[n] + [n + 1]). (21)

To proceed further, we employ the result
n∑

k=0

[k] = 2 cos(πα/2)[n/2][(n + 1)/2] (22)

which is easy to prove by using identities involving sums of trigonometric functions. This
gives us the following result for F(n), after some algebra:

F(n) = 1

n + 1
2 cos(πα/2)[(n + 1)/2]{[n/2] + [n/2 + 1]}. (23)

We can also derive another identity

[n/2] + [n/2 + 1] = 2 cos(πα/2)[(n + 1)/2] (24)

which can be used to simplify the above result. Hence we obtain

F(n) = 4

n + 1
{[(n + 1)/2] cos(πα/2)}2. (25)

We observe that this reproduces the expected result F(n) → n + 1 in the Bose limit. Upon
now invoking the detailed balance we obtain the important result

1

z
eβE = F(n)/n = 4

n(n + 1)
{[(n + 1)/2] cos(πα/2)}2. (26)

This can be rewritten in the following convenient form in order to deal with the distribution
function

eβ(E−µ) = 1

n(n + 1)

sin2(n + 1)πα/2

sin2 πα/2
. (27)

Solving this equation should, in principle, lead to the distribution function for the anyons in
this formulation. At this point before dealing with the distribution function, we need to study
the nature of the intermediate statistics as an interpolation between the BE and FD limits.
Specifically we need to study the limits corresponding to BE and FD statistics.

We have already observed that F(n) → n + 1 in the Bose limit, f → 1. Indeed, it is
readily verified that equation (26) reproduces the correct BE statistical distribution. The case
of Fermi limit, α → 1, f → −1, is, however, somewhat complicated. We have: [n] → n,−n

for odd and even occupation numbers respectively. Evaluating the limit in equation (26), the
enhancement factor may be put in the form

lim
α→1

F(n) = 1

n + 1

(
Im ei(n+1)π/2

)2
(28)

thus resulting in a generalized Fermion theory. This corresponds to an infinite-dimensional
representation analogous to the generalized fermions investigated by Chaichian et al. If we
consider only n = 0, 1, and impose the exclusion principle ‘by hand’, then F(n) → 1, 0. This
is equivalent to F(n) → 1 − n and in this case it reproduces the standard Fermi distribution
with the exclusion principle. For arbitrary n, which is allowed, however, it is an infinite value
representation

lim
α→1

F(n) = 1

n + 1
{1, 0, 1, 0, 1, . . .} (29)
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and we find that F(n) has repeating values 1/(n + 1) and 0 in the limit α → 1, f → −1.
This is thus a special and interesting feature of this theory. Thus for arbitrary values of the
parameter f , including the Fermi limit f → −1, the theory of intermediate statistics requires
the existence of generalized fermions beyond the exclusion principle.

4. The distribution function

We begin by rewriting equation (27) in the form

eβ(E−µ) = 1

n(n + 1)

sin2(n + 1)x

sin2 x
. (30)

Here x = πα/2 in terms of the statistics determining parameter. The object is to determine
the average occupation number n, the distribution function, so that we can compare with the
standard BE or FD distribution and understand the nature of the interpolating statistics. We
can expand the right-hand side in a power series

eβ(E−µ) = 1

n
+ a0 + a1n + a2n

2 + a3n
3 + · · · (31)

where

a0 = csc2x(x sin 2x − sin2 x)

a1 = csc2x(x2 cos 2x − x sin 2x + sin2 x)
(32)

a2 = csc2x{−x2 cos 2x − sin2 x + (x − 2x3/3) sin 2x}
a3 = csc2x{(x2 − x4/3) cos 2x + sin2 x − (x − 2x3/3) sin 2x}

and so on. The coefficients to any desired order can be obtained by using Mathematica. It is
clear that a0 → 1, while an → 0 for n � 1 in the Bose limit, which is consistent with the BE
distribution as described in section 3. In the case of the Fermi limit, a0 → −1 and it leads to
the generalized fermions. We can rewrite the above as

1

g
= n − a1

g
n2 − a2

g
n3 − a3

g
n4 − · · · (33)

where g = eβ(E−µ) − a0. This series can be reverted to express n as a series in powers of 1/g,
thus

n = 1/g + B/g2 + C/g3 + D/g4 + E/g5 + F/g6 · · · (34)

where

B = a1/g C = (
2a2

1

/
g2 + a2/g

)
D = (

5a1a2/g
2 + a3/g + 5a3

1

/
g3)

E = 6a1a3/g
2 + 3a2

2

/
g2 + 14a4

1

/
g4 + a4/g + 21a2

1a2/g
3 (35)

F = 7a1a4/g
2 + 7a2a3/g

2 + 84a3
1a2/g

4 + a5/g + 28a2
1a3/g

3 + 28a1a
2
2

/
g3 + 42a5

1

/
g5

and so on. Upon rearrangement, we can rewrite the above form for the distribution function
as the following series:

n(E) = 1/g + a1/g
3 + a2/g

4 +
(
2a2

1 + a3
)
/g5 + (5a1a2 + a4)/g

6

+
(
5a3

1 + 6a1a3 + 3a2
2 + a5

)/
g7 + · · · . (36)

We observe that this is a power series in 1/g but the term with 1/g2 is absent. We can
rewrite equation (36) in the form

n(E) = 1/g +
∞∑

k=3

αk/g
k (37)
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where

α3 = a1 α4 = a2 2a2
1 + a3 = α5 5a1a2 + a4 = α6 (38)

etc. We can now express this in the form of a continued fraction. We invoke the standard
algorithm which can be introduced as follows [21]. If a continued fraction is of the form

Bn

Cn

= c0 +
b1

c1 +
b2

c2 + · · ·
(39)

then the successive convergents (approximants) are obtained by the recurrence formulae

Bn = cnBn−1 + bnBn−2 Cn = cnCn−1 + bnCn−2 B−1 = 1 C−1 = 0. (40)

Thus in order to put the series in equation (37) in the continued fraction form, we proceed with
the first convergent and set c0 = B0/C0 = 0. Using the recurrence relations (40) we determine
B0 = 0, C0 = 1, b1 = 1, c1 = g, B1 = 1, C1 = g. This determines the first convergent as
n = 1/g. Next, the recurrence relations lead to b2 = −α3g, c2 = g2 + α3, B2 = g2 + α3, C2 =
g3 which determines the second convergent to be

n = 1

g − α3g

g2 + α3

. (41)

Continuing on with successive convergents in this manner, we obtain the desired infinite
continued fraction form for the distribution function as follows:

n(E) = 1

g − α3g

g2 + α3 − α4g

α3g + α4 − α5g

α4g + α5 − · · ·

. (42)

This is the distribution function in the exact theory, albeit not in a closed form. Approximations
can be implemented in order to investigate the thermostatistical properties of the anyons. The
first approximant,

n(E) = 1

eβ(E−µ) − a(α)
(43)

was indeed employed, as an ansatz, in our earlier investigation [11]. It might be pointed out
that the continued fraction form is mathematically desirable in view of the fact that it can be
expressed as a ratio of polynomials, hence analytic in the variable α as well as offering the
best approximation possible. This form is also amenable to investigation in terms of Pade
approximants.

Finally it must be pointed out that equation (42) is an exact expression for the distribution
function, albeit in the form of an infinite continued fraction, and can be determined explicitly
for any specific value of the parameter α, either as an infinite continued fraction, or to any
desired approximation. For instance, for the case of α = 1

2 , the exact form of the distribution
function is

n(E)|α= 1
2

= 1

g +
a0g

g2 − a0 +
(a0 − π3/48)g

a0g − (a0 − π3/48) + · · ·

(44)

where a0
(

1
2

) = 1
2π − 1.
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5. Summary

The thermodynamic distribution function of anyons in two space dimensions, obeying
interpolating statistics is not known in the literature and is an open question. We have not only
found an answer, thus determining the distribution function, but also we have demonstrated that
the theory describing interpolating statistics has several remarkable and interesting features.
Our investigation leads to a generalized definition of permutation symmetry in arbitrary
dimensions and not restricted to two space dimensions. We have shown that the theory
of permutation symmetry that would describe particles obeying interpolating statistics is
succinctly formulated in the language of basic numbers. These basic numbers arise naturally
and automatically in this formulation but do not explicitly invoke any deformed oscillator
algebra. Our theory is based on the principle of detailed balancing which is a consequence of
the second law of thermodynamics. Furthermore, this formulation leads to the determination
of the exact distribution function, without introducing any approximation. In this manner,
we have formulated the theory which leads to a transcendental equation for the distribution
function of anyons in terms of the statistics determining parameter and the Boltzmann factor
containing the energy of the state. We obtain a solution of this equation which we express
as a power series as well as in the form of a continued fraction. We show that the first
approximation of this theory reproduces a form of the distribution function introduced by us
in an earlier investigation.

An important feature of our formulation consists of the fact that the basic numbers arise
naturally and automatically in this theory, specifically the symmetric formulation of the basic
numbers. The basic numbers arise automatically in our theory but they are not part of
an oscillator algebra, nor do we introduce the construction of Fock space for the particles
obeying the intermediate statistics. The theory reduces to BE statistics in the Bose limit,
f → 1, α → 0. The Fermi limit, f → −1, α → 1 leads to generalized fermions beyond
the exclusion principle and thus correspond to an infinite-dimensional representation and they
reduce to the familiar FD statistics only when n is restricted to 0, 1 by hand.

Although the algebra of q-oscillators appears in the literature on the subject of anyons
[7, 8, 20], it is also known that q-oscillators may have nothing to do with anyons since the
former exist in arbitrary spacetime dimensions. In our formulation, we do not use q-oscillator
algebra, neither do we use Fock states. We do not use the Hamiltonian other than to recognize
that the Hamiltonian should be of a form that permits detailed balance. The Hamiltonian
consists of only the kinetic energy terms and is the free Hamiltonian [5] in the anyon gauge
and the anyon wavefunctions satisfy ‘twisted’ boundary conditions.

It is interesting that the first approximant (first convergent) of our solution corresponds to
the approximate form for the distribution function

n(E) = 1

eβ(E−µ) − a(α)
(45)

which is the form introduced in an earlier investigation [11]. It is interesting that this also
agrees with the partition function derived by the method of Green’s function [20], to first-order
approximation. It should be stressed that while the form above is a point of agreement for an
approximate theory, the form of a in the present formulation as in equation (32), as a function
of the statistics determining parameter, is very different from that of [11]. Finally we obtain
the exact form of the distribution function for the case α = 1

2 in the form of a continued
fraction which can be evaluated to any desired order. Such a form for the distribution function
can indeed be obtained for any chosen value of α, the statistics determining parameter.

It is of much interest that this formulation leads to an intermediate statistical mechanics,
interpolating between BE and FD, without explicit use of the special properties valid in
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(2+1)-spacetime dimensions, but only stems from the principle of detailed balance. This
contrasts with investigations in the literature of anyons which arise from the braid group
in the special case of (2+1)-spacetime. As is seen from equation (30), the dependence on
the statistics determining parameter is through a quadratic function, hence invariant under
α → −α, implying a clockwise–counterclockwise symmetry of the braid [6]. It would be
worthwhile to continue this investigation further in order to explore the relation to these
anyons. As this formulation reveals several desirable and interesting theoretical features, it
is appropriate to pose some questions such as the following. Does the generalization to any
space dimensions imply that the connection with Chern–Simons type of gauge theory can
be extended beyond two space dimensions? Is it possible to formulate the partition problem
corresponding to this generalized, exact theory? Is it possible to determine the many useful
thermodynamic properties of the system described by such an exact theory? These questions
will occupy us in further investigations of this theory.
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